아하! 우주

[아하! 우주] ‘원자 분수’로 시공간의 곡률 측정 성공

폰트 확대 폰트 축소 프린트하기

▲ 충돌하는 블랙홀이 중력파를 일으키는 시공간의 구조에 파문을 일으키는 상상도. 아인슈타인의 일반 상대성 이론은 무거운 물체가 시공간의 왜곡을 일으켜 중력으로 느껴진다고 주장한다. (출처: R. Hurt/Caltech-JPL)

1797년 영국 과학자 헨리 캐번디시는 납 공과 나무 막대, 철사로 만든 장치를 이용해 중력의 강도를 측정했다. 21세기에 과학자들은 좀 더 정교한 도구인 원자를 사용하여 그와 같은 일을 하고 있다. 

중력은 물리학 입문 수업의 초기 주제이지만, 그렇다고 해서 중력의 성질이 완전히 밝혀졌다는 얘기는 아니다. 과학자들은 계속해서 더 높은 정밀도로 중력을 측정하려고 시도하고 있다. 

한 그룹의 물리학자들이 원자에 대한 시간 지연(속도 또는 중력 증가로 인한 현상)의 효과를 사용하여 이 실험을 했다. 지난 13일 '사이언스' 저널 온라인에 게재된 논문에서 연구원들은 이 실험으로 시공간의 곡률을 측정할 수 있었다고 발표했다. 

이 실험은 원자 간섭계라는 장비를 사용한 것으로, 양자 역학의 원리를 이용한다. 광파가 입자로 표현될 수 있는 것처럼 입자는 '파동 다발'로 표현될 수 있다. 그리고 광파가 중첩되어 간섭을 일으킬 수 있는 것처럼, 물질 파동도 마찬가지이다.

특히, 원자의 파동 다발이 둘로 쪼개져 무언가를 하도록 한 다음 다시 결합하게 되면 더 이상 파동이 정렬되지 않을 수 있다. 즉, 위상이 변경되는 것이다. 

새로운 연구에 참여하지 않은 독일 울름 소재의 양자기술연구소 물리학자인 알버트 로라는 "이 위상 변화에서 유용한 정보를 추출하려고 시도한다"라고 스페이스닷컴에 말했다. 로라는 새로운 연구에 대해 '전망'이라는 제목의 글을 사이언스에 게재했다.

중력파 탐지기는 이와 비슷한 원리로 작동한다. 이러한 방식으로 입자를 연구함으로써 과학자들은 전자가 어떻게 행동하는지, 중력이 실제로 얼마나 강한지, 그리고 중력이 상대적으로 짧은 거리에서 미묘하게 변화하는 방식 등, 우주가 작동하는 핵심 원리 뒤에 있는 숫자를 미세 조정할 수 있다.

이는 스탠퍼드 대학의 크리스 오버스트리트와 그의 동료들이 새로운 연구에서 측정한 마지막 효과이다. 이를 위해 그들은 10m 높이의 진공관으로 구성된 '원자 분수'를 만들었다. 이 진공관은 맨 꼭대기 주위에 고리를 두르고 있다.

연구원들은 원자 분수를 통해 레이저 펄스를 발사하여 원자 분수를 제어했다. 한 번의 펄스로 그들은 바닥에있는 두 개의 원자를 발사했다. 두 번째 펄스가 그들을 다시 떨어뜨리기 전에 두 원자는 각각 다른 높이에 도달했다. 세 번째 펄스는 바닥에 있는 원자를 포착하여 원자의 파동 다발을 재결합했다. 여기서 연구원들은 두 개의 파동 다발이 위상이 다르다는 것을 발견했다. 이는 원자 분수의 중력장이 완전히 균일하지 않다는 증거이다.

로라는 알버트 아인슈타인의 가장 유명한 이론 중 하나를 언급하면서 "이는 일반 상대성 이론에서 실제로 시공간 곡률의 효과로 이해될 수 있다"라고 말했다.



더 높이 올라간 원자는 고리에 가까웠기 때문에 고리의 중력 덕분에 더 많은 가속도를 경험했다. 완벽하게 균일한 중력장에서 이러한 효과는 상쇄되지만 이 실험에서는 그렇게 되지 않았다. 원자의 파동 다발은 서로 위상이 달랐고, 시간 지연의 효과로 더 많은 가속을 경험한 원자는 상대 원자와 시간이 약간 어긋났다.

그 결과는 아주 작은 변화지만 원자 간섭계는 이를 감지할 만큼 충분히 민감하다. 과학자들은 고리의 위치와 질량을 제어할 수 있기 때문에 로라는 "그들은 이러한 효과를 측정하고 연구하고 있다"고 밝혔다.

이 발견의 이면에 있는 기술인 원자 간섭계는 난해해 보일 수 있지만, 언젠가는 원자 간섭계가 중력파를 감지하고, GPS보다 더 나은 탐색에 도움이 되는 데 사용될 수 있다고 연구원들은 덧붙였다.

이광식 칼럼니스트 joand999@naver.com 

̽ Ʈ īī丮 α