별이 없던 곳에서 갑자기 밝은 별이 하나 나타나 온 하늘의 별들을 압도할 정도로 눈부시게 반짝인다. 예로부터 이런 별을 가리켜 초신성이라 했지만, 사실 '신성'은 아니다. 정확하게 말하자면, 늙은 별의 임종이다.
나사(NASA)의 발표에 따르면 초신성은 우주에서 가장 큰 규모의 폭발이라고 한다. 이 같은 초신성은 우리은하 크기의 은하에서 평균 50년에 한 번꼴로 나타난다. 이는 곧, 우주를 통털어 볼 때 별들의 폭발은 매초 또는 몇 초마다 일어난다는 뜻이다. 다만 너무나 먼 거리에서 일어나는 일이라 우리가 관측할 수 없을 따름이다.
우리나라에서는 잠시 머물렀다 사라진다는 의미로 객성(客星·손님별)이라고 불렸다. 기록에 남아 있는 최초의 초신성은 185년에 중국의 천문학자들에 의해 관측된 것이다.
1006년에 관측된 초신성은 지금까지 가장 밝았던 초신성으로 추정되며 중국과 이슬람의 천문학자들에 의해 자세히 기록되었다. 1054년에 나타난 초신성은 중국의 천문학자에 의해 관측되었으며, 그 잔해는 게성운이라는 이름으로 남아 있다.
1572년의 초신성은 튀코 브라헤(1546~1601)에 의해 관측되어 튀코 초신성이라고 불리고, 그로부터 30년 뒤인 1604년의 초신성은 요하네스 케플러(1571~1630)에 의해 관측되어 케플러 초신성이라고 불리는데, 우리은하에서 가장 최근에 관측된 초신성이다. 그러니까 50년에 한 번 꼴로 터진다는 초신성이 400년이 넘도록 한 번도 터지지 않았다는 말이다. 그래서 사람들은 위대한 천문학자가 있을 때만 초신성이 터진다는 우스갯소리를 하기도 한다.
1572년과 1604년에 관측된 초신성들은 유럽에서 천문학 발전에 큰 역할을 했다. 아리스토텔레스(BC 384~BC 322)는 세계를 달을 경계로 하여 천상과 지상으로 나누고, 천상의 세계는 영원불변하며, 지상의 세계는 덧없고 변화무쌍한 세계라고 규정했다. 그러나 튀코는 초신성이 그 '천상의 세계'에서 일어난 사건임을 밝힘으로써 아리스토텔레스의 분류법은 덧없이 사라지고 말았다.
초신성, 왜 폭발하는가?
거대한 덩치의 별이 생애의 마지막 지점에 이르러 남은 연료를 태다 우고 나면 이 이상 에너지를 생산할 수 없게 된다. 그러면 무슨 일이 일어나는가? 내부의 압력과 중력의 균형이 무너짐으로써 급격한 중력붕괴를 일으켜 대폭발을 일으키는 것이다.
거대한 별이 한순간에 폭발로 자신을 이루고 있던 온 물질을 우주공간으로 폭풍처럼 내뿜어버린다. 수축의 시작에서 대폭발까지의 시간은 겨우 몇 분에 지나지 않는다. 수천만 년 동안 빛나던 대천체의 종말 치고는 허무할 정도로 짧은 순간에 끝난다. 이것이 바로 초신성 폭발인 것이다.
초신성 폭발 순간에는 태양이 평생 생산하는 것보다 더 많은 에너지를 순간적으로 분출시키며, 태양 밝기의 수십억 배나 되는 광휘로 우주공간을 밝힌다. 빛의 강도는 수천억 개의 별을 가진 온 은하가 내놓는 빛보다 더 밝다. 우리은하 부근이라면 대낮에도 맨눈으로 볼 수 있을 정도로, 초신성 폭발은 은하 충돌과 함께 우주의 최대 드라마다.
약 1000만 년 전에 한 무리의 초신성이 '국부 거품(Local Bubble)'이라고 불리는 가스 구덩이를 만들었는데, 땅콩껍질을 닮은 이 구덩이는 우리은하의 오리온팔에 있으며, 폭이 무려 300광년에 달한다. 우리 태양계도 이 속에 잠겨 있다.
별도 태어나서 살다가 죽는 것은 인간처럼 다를 바가 없지만, 그 종말의 모습이 다 같지는 않다. 별의 운명을 결정짓는 것은 오직 하나, 별의 질량이다.
태양 같은 작은 별들은 대체로 조용한 임종을 맞지만, 태양보다 9배 이상 무거운 별에게는 다른 운명이 기다리고 있다. 임종에 가까워지면 격렬한 중력붕괴를 일으킨 후 대폭발로 장렬한 최후를 맞는 것이다. 이것이 바로 초신성 폭발이다. 그런데 초신성에도 다음 두 가지 종류가 있다.
*Ⅰ형 초신성: 주변의 별 물질을 빨아들여 한계질량에 이르면 폭발하는 초신성.
*II형 초신성: 별 자체의 질량이 커서 스스로 중력붕괴를 일으켜 폭발하는 초신성.
중력붕괴로 폭발하는 II형 초신성
일반적으로 초신성은 태양 질량의 9배 이상의 별이 항성진화의 최종 단계에서 자체 중력에 의한 붕괴로 폭발하는 현상이다. 따라서 초신성의 밝기는 별의 질량에 따라 달라진다. 이것이 II형 초신성이다 .
별이 에너지를 생산하는 방식은 핵에서 수소 융합반응에 의한 것이다. 융합반응은 원소번호 순으로 일어난다. 수소가 다 타서 헬륨이 되면, 헬륨이 융합반을을 시작하고, 탄소, 산소, 네온, 마그네슘, 실리콘, 그리고 끝으로 원자번호 26번인 철로 융합된다. 그리고 별 속에서 만들어진 원소들은 양파 껍질처럼 별 속에 켜켜이 쌓인다.
모든 핵 가운데 가장 강하게 결합하는 것이 철이기 때문에, 철보다 가벼운 원소는 융합으로, 철보다 무거운 원는 분열로 핵 에너지를 방출한다. 그럼 철보다 무거운 원소는 어떻게 만들어진 걸까? 모두 초신성 폭발 때 엄청난 고온과 압력으로 순간적으로 만들어진 것이다. 따라서 양은 비교적 적은 편이다. 금이 쇠보다 비싼 것은 그런 이유 때문이다.
만약 당신의 손가락에 금반지가 끼워져 있다면, 그것은 어떤 초신성이 폭발할 때 만들어져 우주공간을 떠돌다가 지구가 생성될 때 끌려들어와서는 광맥을 형성했고, 그것을 광부가 캐내어 금은방을 거쳐 당신 손가락에 끼워진 것이라고 보면 된다.
무거운 별은 초신성 폭발 후 중력붕괴를 일으켜 고밀도의 별이 되는데, 여기에서도 질량에 따라 운명이 갈라진다. 그 질량이 태양질량의 1.1배 이하가 되면 백색왜성으로 주저앉고, 1.1~3 배 사이가 되면 중성자별이 된다.
중성자별은 우주에서 존재하는 천체 중 가장 고밀도이다. 하지만 덩치는 아주 작다. 거의 한 도시 크기만한 몸집에 태양의 질량의 두 배에 달하는 엄청난 질량을 쑤셔넣어 가지고 있다. 찻술 하나의 중성자별 물질 무게는 약 10억 톤에 달한다.
백색왜성의 중력을 받쳐주는 것은 전자의 축퇴압인 데 비해, 중성자별의 중력을 맞받고 있는 것은 중성자 축퇴압이다. 그래서 고밀도이지만 이상 더 붕괴하지 않고 평형을 이루어 유지된다.
중성자별이 최초로 발견된 것은 1967년, 영국 천문학과 학생 조셀린 벨에 의해서였다. 그녀는 CP 1919에서 오는 일정한 전파 펄스를 발견하여 중성자별 존재를 확인한 후,지도교수인 안토니 휴이시와 같이 제2저자로 논문을 썼는데, 그 업적으로 휴이시는 노벨 물리학상을 받았으나, 벨은 제외되어 많은 논란을 불러일으켰다.
태양질량보다 20~30에 이르는 초거성은 초신성 폭발을 일으키지 않고 중력붕괴 후 곧바로 블랙홀이 된다고 천문학자들은 생각하고 있다. 중성자 축퇴압으로도 자체 중력을 버티지 못해 극한 밀도로 뭉쳐지는 것이다.
표준 촛불인 I형 초신성
우리 태양 같은 별은 질량이 작아서 요란스러운 폭발로 종말을 맞지는 않고 비교적 조용히 생을 마감한다. 앞으로 20억 년쯤 후면, 태양은 연료를 거의 소진하고 점점 뜨거워져 적색거성의 길을 밟는다. 그리하여 최종적으로는 서서히 식어서 백색왜성으로 낙착되겠지만, 그전에 지구의 바닷물은 모두 증발되고 지구상의 모든 것들은 숯덩이처럼 타버리고 말 것이다.
그리고 이윽고 자신의 외각층을 우주공간으로 뿜어내고 마는데, 그것은 거대한 가스 고리를 만들어 명왕성 궤도에까지 이를 것이다. 이 단계를 행성상 성운이라 한다. 한때 지구 행성에서 인류가 일구어온 문명의 잔해들도 틀림없이 그 속에 포함되어 있을 것이다.
이렇게 천천히 식어가는 백색왜성으로서 생을 마감하는 별에 어떤 사건이 벌어질 수도 있다. 별들은 대체로 동반성을 갖고 있는 경우가 많은데, 그 동반성이 많은 물질을 방출하는 적색거성이라면 상황이 달라진다.
적색거성에서 방출된 물질은 백색왜성으로 끌려들어가 백색왜성의 질량이 폭증하는 사태가 오는 것이다. 그렇다고 백색왜성이 물질을 무한정 받아들이는 것은 아니다. 과식금지의 한계선이 있는데, 그것은 태양질량의 1.44배로서, 찬드라세카르 한계라 한다. 인도 출신의 물리학자 찬드라세카르가 밝힌 것으로, 그는 이 발견으로 1983년에 노벨 물리학상을 받았다.
백색왜성의 질량이 이 한계에 이르면 이떤 일이 벌어지는가? 별의 중력을 버텨주는 힘, 곧 별 물질의 전자들이 서로를 밀어내는 축퇴압이 더 이상 감당을 못해 격렬한 중력붕괴를 일으키면서 폭발하고 마는 것이다.
일정한 증가하게 되고, 백색왜성의 질량이 찬드라세카르 한계에 이르게 되면 더 이상 축퇴압으로 버티지 못하고 붕괴되면서 폭발하게 된다. 이렇게 폭발하는 별이 바로 1a형 초신성이다.
1a형 초신성은 비슷한 질량을 가진 상태에서 폭발하기 때문에 폭발시의 최대 밝기가 거의 일정하다. 따라서 1a형 초신성의 겉보기 광도를 재면 그 거리를 알 수 있게 된다. 천문학은 이로써 우주를 재는 중요한 잣대를 하나 마련한 셈이 되었다. 그래서 1a형 초신성을 표준 촛불이라고 한다.
별과 당신의 관계
1929년 에드윈 허블(1889~1953)이 우주가 팽창하고 있다는 놀라운 사실을 처음으로 발견한 이후, 최대의 관심사 중 하나는 우주의 팽창속도가 일정한가 변화하는가라는 문제였다. 이 문제에 답을 준 것이 다름아닌 바로 초신성 1a였다.
과학자들은 멀리 있는 1a형 초신성 수십 개의 거리와 후퇴속도를 분석한 결과, 우주가 일정한 속도로 팽창하는 경우에 비해 밝기가 더 어둡다는 사실이 밝혀냈다. 이것은 이 초신성들이 예상보다 더 멀리 있다는 뜻이며, 그 원인은 단 하나, 우주의 팽창속도가 점점 빨라지고 있음을 뜻하는 것이었다.
이전까지는 우주의 팽창속도가 결국에는 우주에 있는 물질들의 인력 때문에 줄어들 것으로 생각되었지만, 실제 관측 결과는 이와 정반대로 나타난 것이다. 최근의 우주론에서 가장 획기적인 발견으로 인정되고 있는 이 관측 결과는 1998년 두 팀의 천문학자들에 의해 독립적으로 발표되었고, 그들은 후에 이 업적으로 노벨 물리학상을 받았다.
그렇다면 우주의 팽창에 가속 페달을 밟고 있는 존재는 무엇인가? 과학자들이 가장 강한 의혹의 눈길을 보내고 있는 것은 '암흑 에너지(dark energy)'다. '암흑'이라는 접두어가 붙은 것만으로 알 수 있듯이, 이것은 복면을 쓴 정체불명의 진공 에너지다. 더욱이 이 암흑 에너지는 우주가 팽창할수록 더 커지는 성질을 갖고 있다.
따라서 우리는 좀 따분하겠지만 앞으로도 영원히 가속팽창하는 우주를 하염없이 바라보아야 할 운명이다. 어쨌든 이런 놀라운 우주의 비밀을 밝혀준 것이 바로 초신성인 것이다.
그런데 초신성에 대해서 이 모든 것을 압도하는 중요한 햇심은 인간의 몸을 구성하는 모든 원소들, 곧 피 속의 철, 이빨 속의 칼슘, DNA의 질소, 갑상선의 요드 등 원자 알갱이 하나하나는 모두 별 속에서 만들어졌다는 사실이다. 수십억 년 전 초신성 폭발로 우주를 떠돌던 별의 물질들이 뭉쳐져 지구를 만들고, 이것을 재료삼아 모든 생명체들과 인간을 만든 것이다.
우리 몸의 피 속에 있는 요드, 철, 칼슘 등은 모두 별에서 온 것들이다. 이건 무슨 비유가 아니라, 과학이고 사실 그 자체다. 그러므로 우리는 알고 보면 어버이 별에게서 몸을 받아 태어난 별의 자녀들인 것이다. 말하자면 우리는 별먼지로 만들어진 ‘메이드 인 스타(made in stars)'인 셈이다.
이게 바로 별과 인간의 관계, 우주와 나의 관계인 것이다. 이처럼 우리는 우주의 일부분이다. 그래서 우리은하의 크기를 최초로 잰 미국의 천문학자 할로 섀플리(1885~1972)는 이렇게 말했다. ‘우리는 뒹구는 돌들의 형제요 떠도는 구름의 사촌이다’. 바로 우리 선조들이 말한 물아일체(物我一體)이다.
인간의 몸을 구성하는 원자의 2/3가 수소이며, 나머지는 별 속에서 만들어져 초신성이 폭발하면서 우주에 뿌려진 것이다. 이것이 수십억 년 우주를 떠돌다 지구에 흘러들었고, 마침내 나와 새의 몸 속으로 흡수되었다. 그리고 그 새의 지저귀는 소리를 별이 빛나는 밤하늘 아래서 내가 듣는 것이다.
초신성이 폭발하여 자신의 몸을 아낌없이 우주로 돌려주지 않았다면 당신과 나 그리고 새는 존재하지 못했을 것이다.우리가 별에 한없는 동경과 사랑을 느끼며 바라보는 것은 어쩌면 우리 DNA 속에 이러한 별에 관한 오랜 기억이 심어져 있기 때문이 아닐까?
초신성에 관한 뒷담화는 대략 이쯤에서 끝나지만, 마지막으로 우리은하에서 조만간 초신성으로 터질 후보 별 몇 개를 소개하기로 한다.
조만간이래야 1백만 년 이내지만, 대표 선수로는 카시오페이아자리의 로, 용골자리의 에타, 오리온자리의 베텔게우스, 그리고 안타레스, 스피카 등이 대기하고 있고, 지구에서 가장 가까운 초신성 후보는 페가수스자리의 IK(HR 8210)로, 약 150 광년 떨어진 거리에 있다. 이 별은 백색왜성과 주계열성이 쌍성계를 이루고 있는데, 태양질량의 1.15배인 이 백색왜성이 Ia형 초신성이 될 만큼 질량을 누적하는 데는 수백만 년이 걸릴 것으로 추측되고 있다.
이광식 통신원 joand999@naver.com